Định giá trái phiếu

0
355

Định giá trái phiếu là công việc của nhà định giá nhằm tìm ra được giá trị lý thuyết của trái phiếu một cách chính xác. Giá trị của trái phiếu được xác định bằng cách xác định hiện giá của toàn bộ thu nhập nhận được trong thời hạn hiệu lực của trái phiếu. Để từ bước định giá tới bước quyết định giao dịch, bạn có thể thực hiện theo quy trình như sau:

  • Ước lượng dòng tiền sinh ra từ tài sản (thu nhập kỳ vọng)
  • Ước lượng tỷ suất lợi nhuận NĐT yêu cầu(= lãi suất phi rủi ro + phần gia tăng do rủi ro).
  • Lựa chọn mô hình định giá (DCF) thích hợp để áp dụng. Tính hiện giá dòng tiền tệ thu nhập theo tỷ suất lợi nhuận vừa ước lượng.
  • So sánh giá trị lý thuyết vừa định ra với giá trị thị trường
  • Quyết định đầu tư (mua hay bán).

Sau đây, chúng ta sẽ xem xét cách thức vận dụng quy trình này vào việc định giá TP. Để NĐT dễ tìm hiểu, chúng tôi sẽ giới thiệu về các phương pháp định giá TP từ đơn giản đến phức tạp.

1. Định giá trái phiếu không kỳ hạn

Trái phiếu không có thời hạn (trái phiếu vĩnh viễn – perpetual bond or consol) là loại trái phiếu chẳng bao giờ đáo hạn. Đây là loại trái phiếu mà trái chủ sẽ trả một số tiền lãi cố định mãi mãi cho người nào sở hữu trái phiếu. Giá trị của loại trái phiếu này được xác định bằng hiện giá của dòng tiền vô hạn mà trái phiếu này mang lại. Giả sử chúng ta gọi:

  • I là lãi cố định được hưởng mãi mãi
  • V là giá của trái phiếu
  • rd là tỷ suất lợi nhuận yêu cầu của NĐT

Công thức định giá trái phiếu không kỳ hạn:

V= I/rd

Giá của trái phiếu vĩnh cửu chính là tổng hiện giá của toàn bộ lãi thu được từ trái phiếu. Tại sao NĐT chịu bỏ tiền ra mua một trái phiếu chẳng bao giờ đáo hạn, nghĩa là chẳng bao giờ thu hồi lại được tiền gốc bỏ ra? Lý do, là số tiền bỏ ra đó được bù đắp bằng số lãi hàng năm NĐT nhận được mãi mãi.

Ví dụ: Bạn mua một trái phiếu được hưởng lãi 40$ một năm trong khoảng thời gian vô hạn và bạn đòi hỏi tỷ suất lợi nhuận đầu tư là 11%. Hiện giá của trái phiếu này sẽ là: V = I/rd = 40/0,11 = 363,636$.

Việt Nam chưa phát hành loại trái phiếu này, do NĐT chưa có thói quen với việc bỏ tiền ra mua một công cụ không có đáo hạn mà chỉ để hưởng lãi. Tuy nhiên, đứng trên góc độ huy động vốn cho ngân sách nhằm mục đích tái thiết đất nước, loại trái phiếu này cũng rất đáng quan tâm. Nhà nước có thể phát hành loại trái phiếu này huy động vốn cho ngân sách mà không chịu áp lực hoàn trả vốn gốc, trong khi dân chúng đặc biệt là những người sắp sữa nghỉ hưu có thể bỏ tiền ra mua loại trái phiếu này như một công cụ đầu tư để hưởng thu nhập ổn định hàng năm nhằm bổ sung cho thu nhập của mình khi về hưu. Khi NĐT qua đời, loại trái phiếu này có thể chuyển lại cho con cháu họ như một tài sản thừa kế và các thế hệ sau tiếp tục được hưởng lãi mãi mãi.

2. Định giá trái phiếu có kỳ hạn không hưởng lãi định kỳ

Trái phiếu kỳ hạn không hưởng lãi (Zero coupon bond) là loại trái phiếu không có trả lãi định kỳ và được bán với giá thấp hơn nhiều so với mệnh giá. NĐT mua trái phiếu không được hưởng lãi bởi họ vẫn nhận được lợi tức, chính là phần chênh lệch giữa giá mua gốc của trái phiếu với mệnh giá của nó, cuối kỳ đáo hạn được hoàn trả vốn gốc bằng mệnh giá.

Phương pháp định giá loại trái phiếu này cũng tương tự như cách định giá loại trái phiếu có kỳ hạn được hưởng lãi, chỉ khác ở chỗ lãi suất ở đây bằng không nên toàn bộ hiện giá của phần lãi định kỳ bằng không. Do vậy, giá cả của trái phiếu không hưởng lãi được định giá như là hiện giá của mệnh giá khi trái phiếu đáo hạn.

Công thức định giá trái phiếu Zero coupon:

V = MV/(1+rd)n

Ví dụ: Tập đoàn Masan phát hành trái phiếu không trả lãi có thời hạn n =10 năm và mệnh giá MV = 100 nghìn đồng. Nếu tỷ suất lợi nhuận đòi hỏi của NĐT rd = 12%, giá bán V của trái phiếu này sẽ là:

V = 100/(1 + 0.12)10 = 32.200đ

Như vậy, nếu hôm nay NĐT bỏ ra 32.200 đồng để mua trái phiếu này và không được hưởng lãi định kỳ trong suốt 10 năm. Nhưng bù lại, khi đáo hạn NĐT sẽ thu về được 100 nghìn đồng.

3. Định giá trái phiếu có kỳ hạn được hưởng lãi định kỳ năm và nửa năm.

Có thể gọi khác là định giá TP coupon hoặc định giá trái phiếu chiết khấu. Trái phiếu có kỳ hạn được hưởng lãi (nonzero coupon bond) là loại trái phiếu có xác định thời hạn đáo hạn và lãi suất được hưởng qua từng thời hạn nhất định. Khi mua loại trái phiếu này nhà đầu tư được hưởng lãi định kỳ, thường là hàng năm, theo lãi suất công bố (coupon rate) trên mệnh giá trái phiếu và được thu hồi lại vốn gốc bằng mệnh giá khi trái phiếu đáo hạn. Sử dụng các ký hiệu:

V: giá của trái phiếu

I: lãi được hưởng từ trái phiếu (I = MV*i).
i: lãi suất doanh nghiệp trả cho trái phiếu.
rd: tỷ suất lợi nhuận yêu cầu của NĐT.
MV: mệnh giá trái phiếu.
n: số năm còn lại cho đến khi đáo hạn.

Công thức định giá trái phiếu coupon(*):

Định giá trái phiếu 1

Tương tự, để định giá trái phiếu trả lãi theo định kỳ nửa năm bạn chỉ việc thêm chia 2 bên các số liệu I và rd. Đối với n thì nhân 2.

Công thức định giá trái phiếu bán niên:

Định giá trái phiếu 2

Ví dụ: Trái phiếu Vincom có mệnh giá là 1 tỷ đồng. Lãi suất trái phiếu 10.3%/năm, trả lãi hàng năm. Trả nợ gốc 1 lần khi đáo hạn. Ngày phát hành 12/10/2017, ngày đáo hạn 12/10/2022. Suất sinh lợi yêu cầu là 10.25%/năm. Định giá trái phiếu vào thời điểm phát hành?

Ta sử dụng đơn vị triệu đồng thì 1 tỷ đồng = 1000 triệu đồng.

MV: 1000 triệu đồng.
i: 10.3%/năm.
rd: 10.25%/năm.
n: ngày tháng phát hành và đáo hạn như nhau, ta lấy 2022 – 2017 = 5.

Ta tính lãi được hưởng từ trái phiếu (I) trước.

I = MV x i = 1000 x 10.3% = 103 triệu đồng.

Áp dụng vào công thức định giá trái phiếu coupon(*) ta sẽ tính ra được V = 1001.88 triệu đồng.

4. Định giá trái phiếu không trùng với ngày trả lãi

Công thức định giá trái phiếu không trùng với ngày trả lãi:

Vx = (I + V)/(1+rd/365)n

Trong đó:
V: giá trái phiếu (như bình thường).

rd: tỷ suất lợi nhuận yêu cầu của NĐT.

I: lãi được hưởng từ trái phiếu (I = MV*i).
n: là số ngày còn lại cho đến ngày tháng đáo hạn nhưng của năm đang tính.

rd: tỷ suất lợi nhuận yêu cầu của NĐT.

Ví du:  Novaland phát hành trái phiếu có: Mệnh giá MV = 100,000 đồng. Lãi suất i = 9%/năm, trả lãi 1 năm 1 lần. Ngày phát hành 18/11/2004. Ngày đáo hạn 18/11/2019. Suất sinh lợi yêu cầu rd = 9.8%/năm. Định giá trái phiếu vào ngày 18/11/2009 và ngày 16/02/2009?

Đầu tiên ta định giá trái phiếu vào năm 18/11/2009 theo công thức chiết khấu dòng tiền

Với n: là số năm còn lại cho đến khi đáo hạn. Ta tính được n = 2019 – 2009 = 10.

Tính lãi được hưởng từ trái phiếu (I) với I = MV x i = 100 x 9% = 9 (1000 đồng)

Áp dụng vào công thức định giá trái phiếu coupon(*) ta tính được V = 95.04(1000 đồng)

Tiếp đến, tính giá trái phiếu ngày 16/02/2009. Ta tính n như sau:

n = 321 – 46 = 275 (Vì từ đầu năm 2009 đến ngày 18/11/2009 là 321 ngày. Từ đầu năm 2009 đến ngày 16/02/2009 là 46 ngày. Do đó còn 275 ngày để để tới ngày 18/11/2009).

Cuối cùng ta thay vào công thức để tính giá trái phiếu ngày 16/02/2009:

Vx = (I + V)/(1+rd/365)= (9+95.04)/(1+9.8%/365)275 = 96.64(1000 đồng)

5. Định giá trái phiếu có lãi suất thả nổi (Floating rate bond)

Trái phiếu có lãi suất thả nổi là loại trái phiếu mà lãi suất của nó được điều chỉnh theo sự thay đổi của lãi suất thị trường. Đặc điểm này đảm bảo được quyền lợi của trái chủ khi thị trường tài chính tiền tệ không ổn định. Thông thường cứ 6 tháng người ta căn cứ lãi suất tiền gởi ngắn hạn của ngân hàng sẽ điều chỉnh lãi suất cho phù hợp. Lãi suất của trái phiếu thả nổi thường được ấn định trên cơ sở lãi suất thị trường cộng thêm một tỷ lệ % cố định. Dòng tiền của TP này có thể chia làm 2 phần:

  • Phần 1: dòng tiền có lãi suất thả nổi nhận được từ lãi suất thị trường. Dòng tiền này bao gồm cả khoản thanh toán mệnh giá khi đáo hạn.
  • Phần 2: dòng tiền dựa trên khoản chênh lệch giữa các khoản thanh toán của trái phiếu có lãi suất thả nổi.

Ví dụ: Một trái phiếu thả nổi lãi suất có mệnh giá MV = 1.000.000 đ, được yết giá bằng lãi suất LIBOR 6 tháng cộng thêm 25 điểm cơ bản (100 điểm cơ bản = 1%).

Nếu LIBOR 6 tháng đầu tiên là i =8,46% thì số tiền trả lãi 6 tháng sẽ là:

Lãi cố định được hưởng I = MV x i = 1.000.000 x  [(8.46%/2) + 0.25%] = 44.800đ

Nếu LIBOR 6 tháng tiếp theo là i = 8% thì số tiền trả lãi 6 tháng sẽ là:

Lãi cố định được hưởng   I = MV x i = 1.000.000 x  [(8%/2) + 0.25%] = 42.500đ

6. Định giá trái phiếu chuyển đổi (Convertible bond)

Đây là loại trái phiếu có thể chuyển đổi thành cổ phiếu thường của công ty với giá chuyển đổi được ấn định trước.  Tỷ lệ chuyển đổi cho biết số cổ phiếu thường mà mỗi trái phiếu có thể đổi được. Giá trị của trái phiếu chuyển đổi gồm 3 phần:

  • Giá trị của trái phiếu thông thường: nếu không chuyển đổi thì trái phiếu này là trái phiếu thông thường. Giá trị của trái phiếu được tính theo phương pháp định giá trái phiếu.
  • Giá trị chyển đổi: là giá trị của trái phiếu tại thời điểm được đổi ngay thành cổ phiếu thường.

Giá trị chuyển đổi = Số lượng cổ phiếu nhận được x Giá hiện hành của cổ phiếu thường.

  • Giá trị của quyền lựa chọn: trái chủ sẽ quyết định chuyển đổi nếu thấy có lời.

Ví dụ: Một trái phiếu chuyển đổi có mệnh giá MV = 1.000.000 đồng, giá chuyển đổi là 20.000 đ/CP. Như vậy tỷ lệ chuyển đổi là 50.

Nếu giá cổ phiếu hiện hành P = 18.000đ thì giá trị chuyển đổi của trái phiếu là: 18.000 x 50 = 900.000 đ. Nên chuyển đổi lúc này không có lợi.

Khi giá cổ phiếu P = 20.000 đ thì giá trị chuyển đổi của trái phiếu là: 20.000 x 50 = 1.000.000 đ. Nên chuyển đổi lúc này cũng không có lợi.

Khi giá cổ phiếu P = 25.000 đ thì giá trị chuyển đổi của trái phiếu là: 25.000 x 50 = 1.250.000 đ. Vậy chuyển đổi lúc này có lợi.

P/S: Để hiểu rõ hơn về Trái phiếu cũng như về Chứng khoán, NĐT có thể tham khảo thêm trong kho sách về tài chính của chúng tôi tại đây.

TraiphieuViet.vn

BÌNH LUẬN

Xin mời bạn bình luận tại đây
Xin mời điền tên của bạn tại đây